
Project Abstract
Safety-critical and security-critical systems are entering our lives at an increasingly 
rapid pace. These are the systems that help fly our planes, drive our cars, deliver our 
packages, ensure our electricity, or even automate our homes. Especially when 
humans cannot perform a task in person, e.g., due to a dangerous working 
environment, we depend on such systems. Before any safety-critical system 
launches into the human environment, we need to be sure it is really safe. Model 
checking is a popular and appealing way to rigorously check for safety: given a 
system, or an accurate model of the system, and a safety requirement, model 
checking is a “push button” technique to produce either a proof that the system 
always operates safely, or a counterexample detailing a system execution that 
violates the safety requirement. 

As model checking becomes more integrated into the standard design and verification 
process for safety-critical systems, the platforms for model checking research have 
become more limited. Previous options have become closed-source or industry tools; 
current research platforms don’t have support for expressive specification languages 
needed for verifying real systems.

Project Goal 

Fill the current gap in model checking research platforms by

❖ Building a freely-available, open-source, scalable model checking infrastructure 
that

❖ Accepts expressive models,
❖ Efficiently interfaces with state-of-the-art back-end algorithms,
❖ Provides an extensible research and verification toolset.

CCRI: Developing an Open-Source, State-of-the-Art Symbolic 
Model-Checking Framework for the Model-Checking Research Community

Investigators: Kristin Yvonne Rozier, Natarajan Shankar, 
Cesare Tinelli, Moshe Vardi

The problems facing the model-checking research community are made more 
challenging by the lack of any openly available model-checking platform:
❖ Research in symbolic model checking previously showed that significant 

results (up to exponential performance improvement) are possible; but the 
state-of-the-art model checkers are all closed-source.

❖ Comparing advances in model-checking algorithms requires 
re-implementation of existing algorithms.

❖ Model checkers accept different high-level model languages; we cannot 
compare model-checking back-ends over different language models.

Language Design
The design of the intermediate language is intended to:
❖ Serve as an intermediate target language for model checkers
❖ Support a variety of user-facing modeling languages
❖ Directly supported by tools or compiled to lower level languages
❖ Leverage SAT/SMT technology
The language extends the SMT-LIB2 [3] standard by adding define-system and 
check-system commands for defining and checking a model (i.e., Kripke 
Structure) of First-Order Linear Temporal Logic (FO-LTL).

(set-logic QF_LIA)

(define-system Counter :input ((in Int)) :output ((out Int))
:init (= out 0)
:trans (= out' (+ out in))

)

(check-system Counter :input ((i Int)) :output ((o Int))
:assumption (a (= i 2))
:reachable (rch (= o 10))
:query (q (a rch))

)

PVS is an interactive proof assistant based on higher-order logic developed 
at SRI over the last three decades. We use PVS to:
❖ Create a syntactic and semantic  bridge between high-level and low-level 

languages, mapping problems and witnesses.
❖ Define a deep embedding of the sort, expression, system, and query 

syntax and semantics.

❖ Translation from SMV to IL to BTOR2  in Python
❖ Translation of BTOR2 witnesses to IL witnesses in Python
❖ Interface with KIND2 model checker [4]

Lack of Open-Source Model-Checking Platform
Formal Embedding for a Provably Correct 
Translation Pipeline

Providing Tools for Widespread Adoption

References
[1] K.Y.Rozier and M.Y.Vardi, ``A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking,'' 
FM 2011.
[2] Rohit Dureja and Kristin Yvonne Rozier. ``FuseIC3: An Algorithm for Checking Large Design Spaces.'' 
In Formal Methods in Computer-Aided Design (FMCAD), IEEE/ACM, Vienna, Austria, October 2-6, 2017.
[3] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard - Version 2.0. Proceedings of 
the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, England), 2010.
[4] Adrien Champion, Alain Mebsout, Christoph Sticksel, Cesare Tinelli. The Kind 2 Model-Checker. In 
Proceedings of 28th International Conference on Computer Aided Verification (CAV), 2016.
[5] F ́erey, G., Sh, N.:  Code Generation using a formal model of reference counting, NFM 2016.

Left [1]: Graph depicting model analysis time between encodings used by the 
industrial tool CadenceSMV and proposed PANDA tool. Right [2]: Graph 
depicting model checking time for variations of the Ic3 algorithm, including the 
proposed FuseIC3 version.

We leverage PVS2C [5] to generate safe, efficient, standalone, executable C 
code for the embedded language written in PVS, to obtain a  provably correct 
executable of the SMV-IL-BTOR2 pipeline.

We have developed a number of 
formal and informal tools for promoting 
adoption of the intermediate language including:

Website
modelchecker.github.io


