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MULTI-PARTY COMPUTING
Multi-party computing is an emerging computing paradigm to train a learn-
ing model collaboratively by multiple workers. The distributed learning and
federated learning (FL) are special cases of multi-party computing. Multi-party
computing solves the following objective function.

min
x∈Rd

f(x) ≜
1

N

N∑
i=1

fi(x), where fi(x) = Eξ∼Difi(x, ξ).

Our research proposes novel FL algorithms with rigorous theoretical founda-
tions, which could function effectively in the presence of real-world complexi-
ties, e.g. client drift due to high degree of statistical/system heterogeneity, more
complex nested multi-level objectives, and stringent privacy requirements.

I. PROXY WORKLOAD GENERATION
Multi-party computing providers customize their hardware architectures to
accommodate specific workloads. Due to the private nature of such workloads,
providers rely on synthetic benchmarks to guide hardware design.

Existing proxy benchmark generators not only don’t enable fine-grained trade-
off decisions with respect to privacy and performance, but often fail to scale
with emerging workloads and accelerator-rich platforms.

Our research proposes ProxyVM, a scalable, retargetable compiler system that
generates synthetic workloads with great performance predictability a. This re-
search is expected to benefit key stakeholders in the ML supply chain by stream-
lining the hardware design process and minimizing vendor clearing expenses.

Figure 1: Overview of ProxyVM

aProxyVM: A Scalable and Retargetable Compiler Framework for Privacy-Aware Proxy Work-
load Generation, SRC TECHCON ’22

II. FEDERATED MINIMAX OPTIMIZATION
Minimax optimization is critical in many machine learning (ML) applications,
such as adversarial training, reinforcement learning, and AUROC maximiza-
tion. We consider the following federated minimax optimization problem a:

min
x∈Rd1

max
y∈Rd2

{
F (x, y) =

1

N

N∑
i=1

fi(x, y)

}

We focus on nonconvex settings, where fi(x, y) is nonconvex over x ∈ Rd1 and
concave or nonconcave over y ∈ Rd2 .
Under various different settings, e.g. NC (NonConvex) + SC (Strongly Concave)
/ PL / C (Concave), we designed novel optimization algorithms whose sample
and communication complexities obtain best known results.

Settings Algorithm Sample Communication
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)
O
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)
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Ours

O
(
κ4N−1ε−4

)
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O
(
κ2ε−2

)
aSolving a Class of Non-Convex Minimax Optimization in Federated Learning, NeurIPS ’23

III. FEDERATED CSO
CSO (Conditional Stochastic Optimization) has many applications in invariant
learning, AUPRC maximization, and meta-learning. We consider the following
federated CSO problem a:

min
x∈Rd

{
F (x) =

1

N

N∑
n=1

Eξnf
n
ξn

(
Eηn|ξng

n
ηn (x, ξn)

)}

where Eξnf
n
ξn(·) is the outer function on the n-th device with random ξn, and

Eηn|ξng
n
ηn(·, ξn) is the inner function w.r.t. the conditional distribution of ηn | ξn.

We start from proposing FCSG, which is the first algorithm that tackles feder-
ated CSO, to further integrating variance reduction techniques that matches the
lower-bound complexity.

Algorithm Sample Communication

FCSG (Ours) O
(
ϵ−6

)
O
(
ϵ−3

)
Theoretical Lower Bound O

(
ϵ−5

)
-

Acc-FCSG-M (Ours) O
(
ϵ−5

)
O
(
ϵ−2

)
aFederated Conditional Stochastic Optimization, NeurIPS ’23

IV. FEDERATED AUPRC OPTIMIZATION
Imbalanced Binary classification (i.e. positive (negative) data # / total data # ≤
20%) Metric: (1) Accuracy (×), (2) AUROC (✓), (3) AUPRC (✓)
Cross-entropy loss is usually used to optimize accuracy since it is the surro-
gate function of accuracy. We study how to design a surrogate loss function for
AUPRC and introduce an algorithm for AUPRC maximization in the large-scale
distributed online setting a.

min
x

F (x) = Eξ∼D+ [f(g(x; ξ)] = Eξ∼D+ [f (Eξ′∼Dg (x; ξ, ξ
′))]

The network system of N worker nodes G = (V, E) is represented by a doubly
stochastic matrix W = {wij} ∈ RN×N . By setting different network topology
W, our analysis subsumes different types of collaborative training including
federated learning.

aServerless Federated AUPRC Optimization for Multi-Party Collaborative Imbalanced Data Min-
ing, KDD ’23

V. CLIENT-CENTRIC FL
We propose Client-Centric FL algorithms, in which we enable several features
e.g. arbitrary client participation, asynchronous server aggregation, and het-
erogeneous local computing, which are ubiquitous in real-world systems but
missed in most existing FL works.

Algorithm 1 Client-Centric FL
1: for t ∈ {1, ..., T} do
2: At Each Client (Concurrently)
3: Retrieve xµ from the server and its timestamp, set xi

µ,0 = xµ.
4: Select local iteration number Kt,i, which is time-varying and device-

dependent.
5: ∆i

µ = LocalOPT (i, ηl,Kt,i, xµ)

6: Normalize and send ∆i
µ =

∆i
µ

Kt,i

7: At Server (Concurrently)
8: Collect m local updates {∆i

t−τt,i , i ∈ St}, where τt,i is the random delay of
the client i’s local update

9: Aggregate ∆t =
1

|St|
∑

i∈St
∆i

t−τt,i

10: xt+1 = ServerOPT (xt,∆t,H);
11: end for
12: Output: xT

We comprehensively study the property of client-centric FL when ServerOPT
enables momentum and adaptive learning rates.


